Showing posts with label hippocampus. Show all posts
Showing posts with label hippocampus. Show all posts

28.3.14

New Review !!!! Brain metabolite clearance: impact on Alzheimer’s disease

Brain metabolite clearance: impact on Alzheimer’s disease




6.2.14

New article with some drawings .....: Role of Sirt1 During the Ageing Process: Relevance to Protection of Synapses in the Brain

Role of Sirt1 During the Ageing Process: Relevance to Protection of Synapses in the Brain

4.1.14

New research Article with drawings: SIRT1 Protects Dendrites, Mitochondria and Synapses from Aβ Oligomers in Hippocampal Neurons

SIRT1 Protects Dendrites, Mitochondria and Synapses from Aβ Oligomers in Hippocampal Neurons

Juan A Godoy11Centro de Envejecimiento y Regeneración (CARE); Departamento de Biología Celular, Molecular; Facultad de Ciencias Biológicas, Pontificia Universidad Católica de Chile, Santiago, ChileClaudio Allard11Centro de Envejecimiento y Regeneración (CARE); Departamento de Biología Celular, Molecular; Facultad de Ciencias Biológicas, Pontificia Universidad Católica de Chile, Santiago, ChileMacarena S Arrázola12Departamento de Biología, Facultad de Ciencias, Universidad de Tarapacá, Arica, ChileJuan M Zolezzi2 and 1Centro de Envejecimiento y Regeneración (CARE); Departamento de Biología Celular, Molecular; Facultad de Ciencias Biológicas, Pontificia Universidad Católica de Chile, Santiago, ChileNibaldo C Inestrosa1*

Aging is a major risk factor in the onset of neurodegenerative diseases, such as Alzheimer’s disease (AD). SIRT1, a β-NAD+-dependent histone deacetylase activity, holds great potential for promoting longevity, preventing against disease and increasing cell survival. We report here, that SIRT1 protects against the damage caused by Aβ oligomers at the level of synaptic contacts, dendritic branching and mitochondrial structure in cultured rat hippocampal neurons. Neurons overexpressing SIRT1 showed increased synaptic contacts, dendritic branching and preserved mitochondrial morphology, suggesting the prevention of the Aβ oligomer-mediated neurodegeneration. Such effects were not observed in neurons overexpressing a dominant negative form of SIRT1. The potential underlying signaling pathways involved in the SIRT1 neuroprotective mechanism are discussed in the context of the peroxisome proliferator-activated receptors (PPARs), peroxisome proliferator activated receptor co-activator 1α (PGC-1α), mTOR, and the Wnt signaling pathway. Our results suggest that SIRT1 modulation might well be a therapeutic agent to protect against neurodegenerative diseases, like AD.


22.6.13

New Review!!: Wnt signaling in the regulation of adult hippocampal neurogenesis

Wnt signaling in the regulation of adult hippocampal neurogenesis

Lorena Varela-Nallar and Nibaldo C. Inestrosa

In the adult brain new neurons are continuously generated mainly in two regions, the subventricular zone of the lateral ventricles and the subgranular zone (SGZ) in the hippocampal dentate gyrus. In the SGZ, radial neural stem cells give rise to granule cells that integrate into the hippocampal circuitry and are relevant for the plasticity of the hippocampus. Loss of neurogenesis impairs learning and memory, suggesting that this process is important for adult hippocampal function. Adult neurogenesis is tightly regulated by multiple signaling pathways, including the canonical Wnt/beta-catenin pathway. This pathway plays important roles during the development of neuronal circuits and in the adult brain it modulates synaptic transmission and plasticity. Here, we review current knowledge on the regulation of adult hippocampal neurogenesis by the Wnt/beta-catenin signaling cascade and the potential mechanisms involved in this regulation. Also we discuss the evidence supporting that the canonical Wnt pathway is part of the signaling mechanisms involved in the regulation of neurogenesis in different physiological conditions. Finally, some unsolved questions regarding the Wnt-mediated regulation of neurogenesis are discussed.

13.6.13

New paper with drawings: Canonical Wnt Signaling New Paper with drawings!: Protects Hippocampal Neurons from Aβ Oligomers: Role of Non-Canonical Wnt-5a/Ca2+ in Mitochondrial Dynamics

Canonical Wnt Signaling Protects Hippocampal Neurons from Aβ Oligomers: Role of Non-Canonical Wnt-5a/Ca2+ in Mitochondrial Dynamics

Carmen Silva-Alvarez1, Macarena Arrazola2, Juan A. Godoy1, Daniela Ordenes1 and Nibaldo C. Inestrosa1, 2*
1Cell and Molecular Biology, Pontifical Catholic University of Chile, Chile
2Cell and Molecular Biology, Pontifical Catholic University of Chile, Chile

Alzheimer´s disease (AD) is the most common type of age-related dementia. The disease is characterized by a progressive loss of cognitive abilities, severe neurodegeneration, synaptic loss and mitochondrial dysfunction. The Wnt signaling pathway participates in the development of the central nervous system and growing evidence indicates that Wnts also regulate the function of the adult nervous system. We report here, that indirect activation of canonical Wnt/β-catenin signaling using Bromoindirubin-30-Oxime (6-BIO), an inhibitor of glycogen synthase kinase-3β, protects hippocampal neurons from amyloid-β (Aβ) oligomers with the concomitant blockade of neuronal apoptosis. More importantly, activation with Wnt-5a, a non-canonical Wnt ligand, results in the modulation of mitochondrial dynamics, prevents changes induced by Aβ oligomers in mitochondrial fission-fusion dynamics and modulates Bcl-2 increases induced by oligomers. The canonical Wnt-3a ligand neither the secreted Frizzled-Related Protein (sFRP), a Wnt scavenger, did not prevent these effects. In contrast, some of the Aβ oligomer effects were blocked by Ryanodine. We conclude that canonical Wnt/β-catenin signaling controls neuronal survival, and that non-canonical Wnt/Ca2+ signaling controls mitochondrial dysfunction. To our knowledge, this is the first report showing that activation of non-canonical Wnt-5a/Ca2+signaling prevents Aβ oligomer neurotoxicity. Since mitochondrial dysfunction is present in neurodegenerative diseases, the therapeutic possibilities of the activation of Wnt signaling are evident.




4.5.13

Review: Wnt Signaling Roles on the Structure and Function of the Central Synapses: Involvement in Alzheimer’s Disease

Review with drawings accepted !  Click Review Here !!

This is a old version of drawings of Graphique-science, but now are coming new versions!

 Wnts compromise a large family of secreted glycoproteins that have shown to be part of the signaling molecules that regulate several aspects of development such as axis formation and midbrain development [1, 2]. In mammals at least 19 Wnt members have been found. The interaction of a Wnt protein with members of the Frizzled (Fz) family of seven-pass transmembrane cell-surface receptors triggers the activation of the Wnt signaling pathway . In human and mice, 10 members of the Fz family have been identified. In addition, receptor-like tyrosine kinase (Ryk) and receptor tyrosine kinase-like orphan receptor (Ror2) have been identified as alternative Wnt receptors [6-8]. Different Wnt signaling cascades are activated downstream the Wnt receptors, identified as Wnt/β-catenin or canonical pathway, and β-catenin-independent or non-canonical pathways. The canonical pathway involves the transcription of Wnt target genes, while activation of non-canonical Wnt pathways may induce either an increase in intracellular calcium concentration or activation of the c-Jun-N-terminal kinase (JNK) cascade.

24.3.13

Neurogenesis Re-Loaded !!


Neurogenesis in the Sub-Granular Zone (SGZ) of the hippocampus Reloaded!!. This drawing was created in comparison with one of my firsts design in the neurogenesis. Thanks to the creativity and patience to make everyday a nice work !

(Hace un tiempo había realizado este dibujo pero sin los conocimientos que he ido adquiriendo en el tiempo. Hoy año 2013 Graphique-science esta a la vanguardia!!!)

21.11.12

Water Maze

The Morris Water Maze (MWM) is a behavioral procedure used in behavioral neuroscience to the study of spatial memory and learning that depend of the hippocampus.

7.10.12

Long Term Potentiation (LTP)

Proceso de plasticidad sinaptica que ocurre en la región CA1 del hipocampo. La liberación de glutamato permite la activacion de los receptores AMPA y NMDA. Estos ultimos inducen la entrada de calcio permitiendo la activación de la CamKII, la cual permite la incorporacion de mas receptores a la superficie de la espina sináptica.

The synaptic plasticity in the CA1 region in the hippocampus depend of the increase in the release of the neurotransmitter glutamate to the synaptic cleft. This induces the activation of AMPA and NMDA receptors. The NMDA receptor allows the influx of Calcium activating to CamKII to induce the incorporation of new AMPA receptors to the postsynaptic membrane increase the synaptic strenght.

La plasticité synaptique dans la région CA1 de l'hippocampe dépend de l'augmentation de la libération du neurotransmetteur glutamate de la fente synaptique. Ceci induit l'activation des récepteurs AMPA et NMDA. Le récepteur NMDA permet l'afflux de calcium pour activer CaMKII pour induire l'incorporation de nouveaux récepteurs AMPA pour augmenter la membrane post-synaptique de la force synaptique.

29.9.12

Neurogenèse de l'hippocampe / Hippocampal Neurogenesis



Hippocampal Neurogenesis

Neurogenèse de l'hippocampe

Procesos de neurogenesis hipocampal adulta, la cual ocurre en la region granular del giro dentado.