Showing posts with label Wnt signaling. Show all posts
Showing posts with label Wnt signaling. Show all posts

3.3.14

New Article in the cover!: Wnt signaling in the nervous system and in Alzheimer's disease.

Wnt signaling in the nervous system and in Alzheimer's disease.

Abstract

Wnts comprise a large family of proteins that have shown to be part of a signaling cascade that regulates several aspects of development including organogenesis, midbrain development as well as stem cell proliferation. Wnt signaling pathway plays different roles in the development of neuronal circuits and also in the adult brain, where it regulates synaptic transmission and plasticity. It has been also implicated in various diseases including cancer and neurodegenerative diseases, reflecting its relevance in fundamental biological processes. This review summarizes the progress about Wnts function in mature nervous system with a focus on Alzheimer's disease (AD). We discuss the prospects of modulating canonical and non-canonical Wnt signaling as a strategy for neuroprotection. This will include the potential of Wnts to: (i) act as potent regulators of hippocampal synapses and impact in learning and memory; (ii) regulate adult neurogenesis; and finally (iii) control AD pathogenesis.



23.1.14

New Article with drawings: Wnt-5a increases NO and modulates NMDA receptor in rat hippocampal neurons


  • Francisco J. Muñozab
  • Juan A. Godoya
  • Waldo Cerpac
  • Inés M. Pobletead
  • Juan Pablo Huidobro-Toroa,d
  • Nibaldo C. Inestrosaae



  • Abstract

    Wnt signaling has a crucial role in synaptic function at the central nervous system. Here we evaluate whetherWnts affect nitric oxide (NO) generation in hippocampal neurons. We found that non-canonical Wnt-5atriggers NO production; however, Wnt-3a a canonical ligand did not exert the same effect. Co-administration of Wnt-5a with the soluble Frizzled related protein-2 (sFRP-2) a Wnt antagonist blocked the NO production.Wnt-5a activates the non-canonical Wnt/Ca2+ signaling through a mechanism that depends on Ca2+ release from Ryanodine-sensitive internal stores. The increase in NO levels evoked by Wnt-5a promotes the insertion of the GluN2B subunit of the NMDA receptor (NMDAR) into the neuronal cell surface. To the best of our knowledge, this is the first time that Wnt-5a signaling is related to NO production, which in turn increases NMDARs trafficking to the cell surface.





    4.1.14

    New research Article with drawings: SIRT1 Protects Dendrites, Mitochondria and Synapses from Aβ Oligomers in Hippocampal Neurons

    SIRT1 Protects Dendrites, Mitochondria and Synapses from Aβ Oligomers in Hippocampal Neurons

    Juan A Godoy11Centro de Envejecimiento y Regeneración (CARE); Departamento de Biología Celular, Molecular; Facultad de Ciencias Biológicas, Pontificia Universidad Católica de Chile, Santiago, ChileClaudio Allard11Centro de Envejecimiento y Regeneración (CARE); Departamento de Biología Celular, Molecular; Facultad de Ciencias Biológicas, Pontificia Universidad Católica de Chile, Santiago, ChileMacarena S Arrázola12Departamento de Biología, Facultad de Ciencias, Universidad de Tarapacá, Arica, ChileJuan M Zolezzi2 and 1Centro de Envejecimiento y Regeneración (CARE); Departamento de Biología Celular, Molecular; Facultad de Ciencias Biológicas, Pontificia Universidad Católica de Chile, Santiago, ChileNibaldo C Inestrosa1*

    Aging is a major risk factor in the onset of neurodegenerative diseases, such as Alzheimer’s disease (AD). SIRT1, a β-NAD+-dependent histone deacetylase activity, holds great potential for promoting longevity, preventing against disease and increasing cell survival. We report here, that SIRT1 protects against the damage caused by Aβ oligomers at the level of synaptic contacts, dendritic branching and mitochondrial structure in cultured rat hippocampal neurons. Neurons overexpressing SIRT1 showed increased synaptic contacts, dendritic branching and preserved mitochondrial morphology, suggesting the prevention of the Aβ oligomer-mediated neurodegeneration. Such effects were not observed in neurons overexpressing a dominant negative form of SIRT1. The potential underlying signaling pathways involved in the SIRT1 neuroprotective mechanism are discussed in the context of the peroxisome proliferator-activated receptors (PPARs), peroxisome proliferator activated receptor co-activator 1α (PGC-1α), mTOR, and the Wnt signaling pathway. Our results suggest that SIRT1 modulation might well be a therapeutic agent to protect against neurodegenerative diseases, like AD.


    16.9.13

    New Article with drawings: Wnt Signaling in Skeletal Muscle Dynamics: Myogenesis, Neuromuscular Synapse and Fibrosis

    Wnt Signaling in Skeletal Muscle Dynamics: Myogenesis, Neuromuscular Synapse and Fibrosis


    Abstract

    The signaling pathways activated by Wnt ligands are related to a wide range of critical cell functions, such as cell division, migration, and synaptogenesis. Here, we summarize compelling evidence on the role of Wnt signaling on several features of skeletal muscle physiology. We briefly review the role of Wnt pathways on the formation of muscle fibers during prenatal and postnatal myogenesis, highlighting its role on the activation of stem cells of the adult muscles. We also discuss how Wnt signaling regulates the precise formation of neuromuscular synapses, by modulating the differentiation of presynaptic and postsynaptic components, particularly regarding the clustering of acetylcholine receptors on the muscle membrane. In addition, based on previous evidence showing that Wnt pathways are linked to several diseases, such as Alzheimer's and cancer, we address recent studies indicating that Wnt signaling plays a key role in skeletal muscle fibrosis, a disease characterized by an increase in the extracellular matrix components leading to failure in muscle regeneration, tissue disorganization and loss of muscle activity. In this context, we also discuss the possible cross-talk between the Wnt/β-catenin pathway with two other critical profibrotic pathways, transforming growth factor β and connective tissue growth factor, which are potent stimulators of the accumulation of connective tissue, an effect characteristic of the fibrotic condition. As it has emerged in other pathological conditions, we suggests that muscle fibrosis may be a consequence of alterations of Wnt signaling activity.

    22.6.13

    New Review!!: Wnt signaling in the regulation of adult hippocampal neurogenesis

    Wnt signaling in the regulation of adult hippocampal neurogenesis

    Lorena Varela-Nallar and Nibaldo C. Inestrosa

    In the adult brain new neurons are continuously generated mainly in two regions, the subventricular zone of the lateral ventricles and the subgranular zone (SGZ) in the hippocampal dentate gyrus. In the SGZ, radial neural stem cells give rise to granule cells that integrate into the hippocampal circuitry and are relevant for the plasticity of the hippocampus. Loss of neurogenesis impairs learning and memory, suggesting that this process is important for adult hippocampal function. Adult neurogenesis is tightly regulated by multiple signaling pathways, including the canonical Wnt/beta-catenin pathway. This pathway plays important roles during the development of neuronal circuits and in the adult brain it modulates synaptic transmission and plasticity. Here, we review current knowledge on the regulation of adult hippocampal neurogenesis by the Wnt/beta-catenin signaling cascade and the potential mechanisms involved in this regulation. Also we discuss the evidence supporting that the canonical Wnt pathway is part of the signaling mechanisms involved in the regulation of neurogenesis in different physiological conditions. Finally, some unsolved questions regarding the Wnt-mediated regulation of neurogenesis are discussed.

    New Review!! WNT signalling in neuronal maturation and synaptogenesis

    WNT signalling in neuronal maturation and synaptogenesis

    Silvana B. Rosso1 and Nibald C. Inestros

    The Wnt signaling pathway plays a role in the development of the central nervous system (CNS) and growing evidence indicates that Wnts also regulates the structure and function of the adult nervous system. Wnt components are key regulators of a variety of developmental processes, including embryonic patterning, cell specification, and cell polarity. In the nervous system, Wnt signaling also regulates the formation and function of neuronal circuits by controlling neuronal differentiation, axon outgrowth and guidance, dendrite development, synaptic function and neuronal plasticity. Wnt factors can signal through three very well characterized cascades: canonical or β-catenin pathway, planar cell polarity pathway and calcium pathway that control different processes. However, divergent downstream cascades have been identified to control neuronal morphogenesis. In the nervous system, the expression of Wnt proteins is a highly controlled process. In addition, deregulation of Wnt signaling has been associated with neurodegenerative diseases. Here, we will review different aspects of neuronal and dendrite maturation, including spinogenesis and synaptogenesis. Finally, the role of Wnt pathway components on Alzheimer’s disease will be revised.

    13.6.13

    New paper with drawings: Canonical Wnt Signaling New Paper with drawings!: Protects Hippocampal Neurons from Aβ Oligomers: Role of Non-Canonical Wnt-5a/Ca2+ in Mitochondrial Dynamics

    Canonical Wnt Signaling Protects Hippocampal Neurons from Aβ Oligomers: Role of Non-Canonical Wnt-5a/Ca2+ in Mitochondrial Dynamics

    Carmen Silva-Alvarez1, Macarena Arrazola2, Juan A. Godoy1, Daniela Ordenes1 and Nibaldo C. Inestrosa1, 2*
    1Cell and Molecular Biology, Pontifical Catholic University of Chile, Chile
    2Cell and Molecular Biology, Pontifical Catholic University of Chile, Chile

    Alzheimer´s disease (AD) is the most common type of age-related dementia. The disease is characterized by a progressive loss of cognitive abilities, severe neurodegeneration, synaptic loss and mitochondrial dysfunction. The Wnt signaling pathway participates in the development of the central nervous system and growing evidence indicates that Wnts also regulate the function of the adult nervous system. We report here, that indirect activation of canonical Wnt/β-catenin signaling using Bromoindirubin-30-Oxime (6-BIO), an inhibitor of glycogen synthase kinase-3β, protects hippocampal neurons from amyloid-β (Aβ) oligomers with the concomitant blockade of neuronal apoptosis. More importantly, activation with Wnt-5a, a non-canonical Wnt ligand, results in the modulation of mitochondrial dynamics, prevents changes induced by Aβ oligomers in mitochondrial fission-fusion dynamics and modulates Bcl-2 increases induced by oligomers. The canonical Wnt-3a ligand neither the secreted Frizzled-Related Protein (sFRP), a Wnt scavenger, did not prevent these effects. In contrast, some of the Aβ oligomer effects were blocked by Ryanodine. We conclude that canonical Wnt/β-catenin signaling controls neuronal survival, and that non-canonical Wnt/Ca2+ signaling controls mitochondrial dysfunction. To our knowledge, this is the first report showing that activation of non-canonical Wnt-5a/Ca2+signaling prevents Aβ oligomer neurotoxicity. Since mitochondrial dysfunction is present in neurodegenerative diseases, the therapeutic possibilities of the activation of Wnt signaling are evident.




    4.5.13

    Review: Wnt Signaling Roles on the Structure and Function of the Central Synapses: Involvement in Alzheimer’s Disease

    Review with drawings accepted !  Click Review Here !!

    This is a old version of drawings of Graphique-science, but now are coming new versions!

     Wnts compromise a large family of secreted glycoproteins that have shown to be part of the signaling molecules that regulate several aspects of development such as axis formation and midbrain development [1, 2]. In mammals at least 19 Wnt members have been found. The interaction of a Wnt protein with members of the Frizzled (Fz) family of seven-pass transmembrane cell-surface receptors triggers the activation of the Wnt signaling pathway . In human and mice, 10 members of the Fz family have been identified. In addition, receptor-like tyrosine kinase (Ryk) and receptor tyrosine kinase-like orphan receptor (Ror2) have been identified as alternative Wnt receptors [6-8]. Different Wnt signaling cascades are activated downstream the Wnt receptors, identified as Wnt/β-catenin or canonical pathway, and β-catenin-independent or non-canonical pathways. The canonical pathway involves the transcription of Wnt target genes, while activation of non-canonical Wnt pathways may induce either an increase in intracellular calcium concentration or activation of the c-Jun-N-terminal kinase (JNK) cascade.

    29.9.12

    Wnt signaling / signalisation Wnt

    New model proposed for Canonical Wnt signaling that depend of the accumulation of beta-catenin for the transcript Wnt target genes.


    Nouveau modèle proposé pour la signalisation Wnt canonique qui dépendent de l'accumulation de bêta-caténine pour les gènes transcrits les cibles de Wnt.

    Non-canonical Wnt signaling / signalisation Wnt non canonique

    Vía de señalización Wnt no canonica, que involucra 2 de las vias conocidas
    -) Vía Wnt-calcio
    =) Vía Wnt-JNK