WNT signalling in neuronal maturation and synaptogenesis
Silvana B. Rosso1 and Nibald C. Inestros
The Wnt signaling pathway plays a role in the development of the central nervous system (CNS) and growing evidence indicates that Wnts also regulates the structure and function of the adult nervous system. Wnt components are key regulators of a variety of developmental processes, including embryonic patterning, cell specification, and cell polarity. In the nervous system, Wnt signaling also regulates the formation and function of neuronal circuits by controlling neuronal differentiation, axon outgrowth and guidance, dendrite development, synaptic function and neuronal plasticity. Wnt factors can signal through three very well characterized cascades: canonical or β-catenin pathway, planar cell polarity pathway and calcium pathway that control different processes. However, divergent downstream cascades have been identified to control neuronal morphogenesis. In the nervous system, the expression of Wnt proteins is a highly controlled process. In addition, deregulation of Wnt signaling has been associated with neurodegenerative diseases. Here, we will review different aspects of neuronal and dendrite maturation, including spinogenesis and synaptogenesis. Finally, the role of Wnt pathway components on Alzheimer’s disease will be revised.
Showing posts with label synaptic plasticity. Show all posts
Showing posts with label synaptic plasticity. Show all posts
22.6.13
15.12.12
Aplysia colorful
Aplysia californica, one of the invertebrates model in the study of synaptic plasticity and memory. Experiments designed by Eric Kandel, nobel prize in physiology.
24.11.12
Neuron HD!
Do you like the neurons?, the morphology? color? transmission ?? Here is a new model of Graphique Science for you!!
7.10.12
Long Term Potentiation (LTP)
Proceso de plasticidad sinaptica que ocurre en la región CA1 del hipocampo. La liberación de glutamato permite la activacion de los receptores AMPA y NMDA. Estos ultimos inducen la entrada de calcio permitiendo la activación de la CamKII, la cual permite la incorporacion de mas receptores a la superficie de la espina sináptica.
The synaptic plasticity in the CA1 region in the hippocampus depend of the increase in the release of the neurotransmitter glutamate to the synaptic cleft. This induces the activation of AMPA and NMDA receptors. The NMDA receptor allows the influx of Calcium activating to CamKII to induce the incorporation of new AMPA receptors to the postsynaptic membrane increase the synaptic strenght.
La plasticité synaptique dans la région CA1 de l'hippocampe dépend de l'augmentation de la libération du neurotransmetteur glutamate de la fente synaptique. Ceci induit l'activation des récepteurs AMPA et NMDA. Le récepteur NMDA permet l'afflux de calcium pour activer CaMKII pour induire l'incorporation de nouveaux récepteurs AMPA pour augmenter la membrane post-synaptique de la force synaptique.
The synaptic plasticity in the CA1 region in the hippocampus depend of the increase in the release of the neurotransmitter glutamate to the synaptic cleft. This induces the activation of AMPA and NMDA receptors. The NMDA receptor allows the influx of Calcium activating to CamKII to induce the incorporation of new AMPA receptors to the postsynaptic membrane increase the synaptic strenght.
La plasticité synaptique dans la région CA1 de l'hippocampe dépend de l'augmentation de la libération du neurotransmetteur glutamate de la fente synaptique. Ceci induit l'activation des récepteurs AMPA et NMDA. Le récepteur NMDA permet l'afflux de calcium pour activer CaMKII pour induire l'incorporation de nouveaux récepteurs AMPA pour augmenter la membrane post-synaptique de la force synaptique.
Subscribe to:
Posts (Atom)