5.3.14
3.3.14
New Article in the cover!: Wnt signaling in the nervous system and in Alzheimer's disease.
Wnt signaling in the nervous system and in Alzheimer's disease.
Abstract
Wnts comprise a large family of proteins that have shown to be part of a signaling cascade that regulates several aspects of development including organogenesis, midbrain development as well as stem cell proliferation. Wnt signaling pathway plays different roles in the development of neuronal circuits and also in the adult brain, where it regulates synaptic transmission and plasticity. It has been also implicated in various diseases including cancer and neurodegenerative diseases, reflecting its relevance in fundamental biological processes. This review summarizes the progress about Wnts function in mature nervous system with a focus on Alzheimer's disease (AD). We discuss the prospects of modulating canonical and non-canonical Wnt signaling as a strategy for neuroprotection. This will include the potential of Wnts to: (i) act as potent regulators of hippocampal synapses and impact in learning and memory; (ii) regulate adult neurogenesis; and finally (iii) control AD pathogenesis.
Etiquetas:
alzheimer disease,
cover,
Wnt signaling
6.2.14
New article with some drawings .....: Role of Sirt1 During the Ageing Process: Relevance to Protection of Synapses in the Brain
Role of Sirt1 During the Ageing Process: Relevance to Protection of Synapses in the Brain
- Juan A. Godoy,
- Juan M. Zolezzi,
- Nady Braidy,
- Nibaldo C. Inestrosa
- Abstract
- Ageing is a stochastic process associated with a progressive decline in physiological functions which predispose to the pathogenesis of several neurodegenerative diseases. The intrinsic complexity of ageing remains a significant challenge to understand the cause of this natural phenomenon. At the molecular level, ageing is thought to be characterized by the accumulation of chronic oxidative damage to lipids, proteins and nucleic acids caused by free radicals. Increased oxidative stress and misfolded protein formations, combined with impaired compensatory mechanisms, may promote neurodegenerative disorders with age. Nutritional modulation through calorie restriction has been shown to be effective as an anti-ageing factor, promoting longevity and protecting against neurodegenerative pathology in yeast, nematodes and murine models. Calorie restriction increases the intracellular levels of the essential pyridine nucleotide, nicotinamide adenine dinucleotide (NAD+), a co-substrate for the sirtuin 1 (Sirt1, silent mating-type information regulator 2 homolog 1) activity and a cofactor for oxidative phosphorylation and ATP synthesis. Promotion of intracellular NAD+ anabolism is speculated to induce neuroprotective effects against amyloid-β-peptide (Aβ) toxicity in some models for Alzheimer’s disease (AD). The NAD+-dependent histone deacetylase, Sirt1, has been implicated in the ageing process. Sirt1 serves as a deacetylase for numerous proteins involved in several cellular pathways, including stress response and apoptosis, and plays a protective role in neurodegenerative disorders, such as AD.
-
23.1.14
New Article with drawings: Wnt-5a increases NO and modulates NMDA receptor in rat hippocampal neurons
Abstract
Wnt signaling has a crucial role in synaptic function at the central nervous system. Here we evaluate whetherWnts affect nitric oxide (NO) generation in hippocampal neurons. We found that non-canonical Wnt-5atriggers NO production; however, Wnt-3a a canonical ligand did not exert the same effect. Co-administration of Wnt-5a with the soluble Frizzled related protein-2 (sFRP-2) a Wnt antagonist blocked the NO production.Wnt-5a activates the non-canonical Wnt/Ca2+ signaling through a mechanism that depends on Ca2+ release from Ryanodine-sensitive internal stores. The increase in NO levels evoked by Wnt-5a promotes the insertion of the GluN2B subunit of the NMDA receptor (NMDAR) into the neuronal cell surface. To the best of our knowledge, this is the first time that Wnt-5a signaling is related to NO production, which in turn increases NMDARs trafficking to the cell surface.
9.1.14
8.1.14
Subscribe to:
Posts (Atom)