8.4.14

New Review !! "Signaling pathway cross talk in Alzheimer’s disease"

Signaling pathway cross talk in Alzheimer’s disease


Juan A Godoy1Juvenal A Rios1Juan M Zolezzi2Nady Braidy3 and Nibaldo C Inestrosa13*

Abstract

Numerous studies suggest energy failure and accumulative intracellular waste play a causal role in the pathogenesis of several neurodegenerative disorders and Alzheimer’s disease (AD) in particular. AD is characterized by extracellular amyloid deposits, intracellular neurofibrillary tangles, cholinergic deficits, synaptic loss, inflammation and extensive oxidative stress. These pathobiological changes are accompanied by significant behavioral, motor, and cognitive impairment leading to accelerated mortality. Currently, the potential role of several metabolic pathways associated with AD, including Wnt signaling, 5' adenosine monophosphate-activated protein kinase (AMPK), mammalian target of rapamycin (mTOR), Sirtuin 1 (Sirt1, silent mating-type information regulator 2 homolog 1), and peroxisome proliferator-activated receptor gamma co-activator 1-α (PGC-1α) have widened, with recent discoveries that they are able to modulate several pathological events in AD. These include reduction of amyloid-β aggregation and inflammation, regulation of mitochondrial dynamics, and increased availability of neuronal energy. This review aims to highlight the involvement of these new set of signaling pathways, which we have collectively termed “anti-ageing pathways”, for their potentiality in multi-target therapies against AD where cellular metabolic processes are severely impaired.



28.3.14

New Review !!!! Brain metabolite clearance: impact on Alzheimer’s disease

Brain metabolite clearance: impact on Alzheimer’s disease




13.3.14

Drawing: "Wnts in adult brain: from synaptic plasticity to cognitive deficiencies"

Wnts in adult brain: from synaptic plasticity to cognitive deficiencies.

Oliva CA, Vargas JY, Inestrosa NC.

Abstract

During development of the central nervous system the Wnt signaling pathway has been implicated in a wide spectrum of physiological processes, including neuronal connectivity and synapse formation. Wnt proteins and components of the Wnt pathway are expressed in the brain since early development to the adult life, however, little is known about its role in mature synapses. Here, we review evidences indicating that Wnt proteins participate in the remodeling of pre- and post-synaptic regions, thus modulating synaptic function. We include the most recent data in the literature showing that Wnts are constantly released in the brain to maintain the basal neural activity. Also, we review the evidences that involve components of the Wnt pathway in the development of neurological and mental disorders, including a special emphasis on in vivo studies that relate behavioral abnormalities to deficiencies in Wnt signaling. Finally, we include the evidences that support a neuroprotective role of Wnt proteins in Alzheimer's disease. We postulate that deregulation in Wnt signaling might have a fundamental role in the origin of neurological diseases, by altering the synaptic function at stages where the phenotype is not yet established but when the cognitive decline starts.


3.3.14

New Article in the cover!: Wnt signaling in the nervous system and in Alzheimer's disease.

Wnt signaling in the nervous system and in Alzheimer's disease.

Abstract

Wnts comprise a large family of proteins that have shown to be part of a signaling cascade that regulates several aspects of development including organogenesis, midbrain development as well as stem cell proliferation. Wnt signaling pathway plays different roles in the development of neuronal circuits and also in the adult brain, where it regulates synaptic transmission and plasticity. It has been also implicated in various diseases including cancer and neurodegenerative diseases, reflecting its relevance in fundamental biological processes. This review summarizes the progress about Wnts function in mature nervous system with a focus on Alzheimer's disease (AD). We discuss the prospects of modulating canonical and non-canonical Wnt signaling as a strategy for neuroprotection. This will include the potential of Wnts to: (i) act as potent regulators of hippocampal synapses and impact in learning and memory; (ii) regulate adult neurogenesis; and finally (iii) control AD pathogenesis.



6.2.14

New article with some drawings .....: Role of Sirt1 During the Ageing Process: Relevance to Protection of Synapses in the Brain

Role of Sirt1 During the Ageing Process: Relevance to Protection of Synapses in the Brain